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COMPRESSION OF THE MAGNETIC FIELD IN A COLLAPSING
SPHERICAL CAVITY

V. K. Bodulinskiy and Yu. A. Medvedyev
(Moscow)

ABSTRACT. The characteristics method of analysis, employing
integral transformations, used in this presentation, describes
a primary dimension physical phenomenon; magnetic field com-
pression in a collapsing spherical cavity.

Solutions are found for equations describing the compression of a magnetic /114*

field created by a system of meridional currents in a collapsing spherical

cavity.

The problem of the compression of a magnetic field between two approaching,

ideally conductive planes was examined by the characteristics method in- [1, 2].

In [2], the analogous problem for cylindrical geometry was examined. The pro-

blem was resolved by the method of integral transformations. The results of

the solution of these problems may be suitable for-the description of the

physical phenomena which arise in systems having v rimi n s

Often (for example, in the tests described in [3]) the most important end

stage of the compression of the field takes place.j .ah has no mark-

edly expressed primary dimension. In this connec we xamine below the

problem of compression of a magnetic field in a h n contra-

distinction to the case of cylindrical geometry 2 t , It a; issue makes

possible simpler solutions which are more readily apprehended.

1. Let us examine the electrodynamic

Problem of thecompression of an initial

/ 1 / A /electromagnetic field in a collapsing

IJo ,1: AndIX spherical cavity in an ideally conductive

?!/ii /~,',/ field. We shall limit ourselves to the

case of linear dependence of the radius of

/ ' '!', ; // the cavity upon time

*Numbers in the margin indicate pagination]in the foreign text.
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(1.1)
~~ V I ~___
a (t)= a, - vt .

where a
0

is the initial radius of the cavity.

We should note that from the experimental relationship a(t) introduced in

[1] it follows that in practice the relation of (1.1) is sufficiently well sus-

tained right up to a moment in time approaching the time of maximum compression.

Let us select as the initial field, a field created by an axially sym-

metrical system of currents as shown diagrammatically in the figure. A system

of surface currents j' (sum current I) at point A flows into a diametral con-

ductor AB and dissipates over the surface from point B.

From symmetry it follows that in a spherical system of coordinates having

their origin at the center of the sphere the components H,, E., and Er can be

other than zero. It follows directly from the Maxwell equations that at the

initial moment the derivatives of the radial component in accordance with time,

of all orders, are equal to zero, so that the radial component is not affected

,upon compression.

On this account we come to the following problem. We are to

tion for a Maxwell equation having initial condition

,Hqo~,0,0 )-- /r-l (sin )-1 i a.)

=, }0) Eo (r, 0, 0)- O0

0 O (r > ao) "
, and boundary condition

EB(a(t), 6, t) - ac'
-

H (a (t), 6, t) = 

find a solu-

(1.2)

(1.3)

The latter condition must be met upon an ideally conductive surface moving with

a velocity da/dt [4].

The equations as well as the boundary and the initial conditions

separation of the angular variable if we assume that

HT t, 0 t- _(sin 0)1 h (r, t), E@ (r, i, t) = (sin 6gle (r, t) 7

permit

(1.4)

2. Separating the angular relationship and excluding the function e(r, t)

from the equations for the boundary and initial conditions, we come to the

problem I
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a2h 1h i 2h A 8 1h 

49r2 + 0, h (r, O)r ar - at2 r at )t= 

.- a-)rr=a a, c a'--+ c- dt [a'h (a, ) = - (1 + ) ) (2.1)
(2.1)

( = v/c = -a/'c)

We solve (2.1) with the help of the Fourier-Bessel transform

a (k,t)= 5 h(r, t),no (kr) r2 dr

oo0 ig()a) Ckr (2.2)(n. (r) = _ Cok?__)(
h (r, t) 2n'-1 d (k, t) no (kr) kdk

Here n
O

is a spherical Neumiann function 5f zero order. The choice of n o

n
0
(kr) as an eigenfunction is occasioned by the singularity of the initial

distribution of (1.2) when r = 0.

After transformation of (2.2), (2.1) is reduced to the solution of equa-

tions for O(k, t)

(2. 3)

having initial conditions

() (k, 0) = - Ik - 2 sin kao, (dDP / dt)=o = 0
. ~J~ -' -- 7 ,C" ,- - t (2.4)

The solution satisfying (2.3) and (2.4) has the form

q) (k, t) = -k-2 sin kao cos kct -
t .

-Ce (-- 2) I a2 (') h* (t) jo' (ka (T)) sin kc (t - T) dr'
0

(h*(t) :h(a(t), t))

An unknown field at the limit of the area forms part of (2.5).

to define it we make use of expression (2.2), letting r = a(t) and

the integral in the right hand term, inasmuch as

h * (t) = 2- [Ih (a (t) O, t) + h (a (t)- O, t)], h (a (t) - O, t) = O

Then for H*(,t) we get the following functional equation:

h* (t) = (T.-- t) a (t-)ot < 2 +--

h* (t) = 2h* (r (t - tl)) (t < t < T. y = (1+) /(1--!))

(2.5)

In order

doubling

(2.6)
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We determine the sequence of times {t
n

} in the following manner:

(2.7)

From (2.7) we get

c (t, - tnz) = a (t,) + a (tn-)

tn -T (- T- ) (n-o,i,2,...)

The sequencel {tn } is reduced to T as n + A. The difference tn - tn_ 1 cor-

responds to the time over which thewaye, travels the path wall-center-wall.

Hence, the solution of (2.6 has the form

(2.8)?* (t) = T-
x (1_- P)-li [a (t)]-l (tnl<t<fn)

Substituting (2.8) in (2.5), and then in (2.2), we find the desired

solution:

Jr-1,

.h (r , t) = b/oar- rn (;, + t 1),

lr -n+ l ,Ir 'f ,a

0 < t < - (ao - r)

tn+ - C - l [a (tn)- r] < t < t,, I+ c - l [a (tn) + r]

tn +- C-l [a (t,)+ r] < t < tn+l + c- [a (t,+,) - r]

o
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